
Protocol Composition Frameworks
A Header-Driven Model∗†

Daniel C. Bünzli, Sergio Mena, Uwe Nestmann
École Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
daniel.buenzli, sergio.mena, uwe.nestmann @epfl.ch

Abstract

Protocol composition frameworks provide off-the-shelf
composable protocols to simplify the development of cus-
tom protocol stacks. All recent protocol frameworks use
a general-purpose event-driven model to manage the in-
teractions between protocols. In complex compositions,
where protocols offer their service to more than one other
protocol, the one-to-many interaction scheme of the event-
driven model introduces composition problems by mixing
up the targets to which data (list of headers) should be deliv-
ered. To solve these problems, we propose to shift the driv-
ing force behind interactions from the events to the head-
ers they carry. We show that the resulting domain-specific
header-driven model solves the composition problems, pro-
vides statically typed header handling and enhances proto-
col readability.

1 Introduction and summary

A protocol stack is a middleware infrastructure that pro-
vides a service to simplify the development of distributed
applications running on a failure-prone computing infras-
tructure (communication or node failures). Whereas a pro-
tocol stack simplifies the development of a distributed ap-
plication, the purpose of a protocol composition frame-
work [5, 9, 4, 8, 1] is to ease the development of custom
protocol stacks.

The vision of being able to tailor stacks to the needs of
specific applications by composing off-the-shelf protocols
drives research in protocol frameworks. This vision will
only be realized if protocols are developed modular and hi-
erarchical wise and powerful component languages are pro-
vided to structure and compose them (§2, [2, §7.1]). In this

∗Supported by the Swiss National Science Foundation, grant No. 21-
67715.02 and the Hasler Foundation, grant No. DICS 1825.

†Due to an unexpected cut in the number of pages, the paper omits
many details. For a better understanding of the material we strongly en-
courage the reader to consult the technical report [2] (10 pages).

paper we argue that these goals are hindered by the pro-
gramming model of recent protocol frameworks (§3). These
frameworks [8, 4, 1] all base the interaction mechanism be-
tween protocols on an event(-driven) model. In this model,
computations are specified by event handlers. Handlers can
be bound to events and are executed when the latter are trig-
gered. Many handlers can be bound to a single event, which
means that the interaction scheme is one-to-many (vs. one-
to-one).

The structure of protocol compositions is changing from
stacks to graphs [6, 7] in which protocols offer their ser-
vices to more than one protocol. The event model matches
the reactive nature of distributed computing and the way
protocols are described in the literature, but its one-to-many
interaction scheme introduces composition problems in pro-
tocol graphs. Protocols may receive events that are not tar-
geted at them. This compromises the definition of power-
ful component languages on top of an event model because
ad hoc mechanisms need to be introduced to “route” events
to the right protocols. Moreover, the event model doesn’t
properly handle peer interactions, where a protocol inter-
acts with its peer running on another node by using the ser-
vice of a lower-level protocol. The way events handle this
ubiquitous pattern is (1) complex, many unnecessary bind-
ings need to be done by the composer (2) obscure, the indi-
rections introduced by events hide, in the code, the logical
structure of peer interactions (3) unsafe, misbindings may
lead to runtime type errors or erratic behaviour.

Instead, we propose a novel and simple alternative (§4,
[2, §6]) that shifts the driving force behind interactions from
events to the headers they carry. The resulting header-
driven model (1) solves the composition problems of the
event model (2) simplifies inter-protocol dependencies (3)
concisely handles peer interactions and explicitly reveals
their logical structure (no obfuscating indirections) (4) pro-
vides better static typing which avoids the runtime type er-
rors and erratic behaviour that can occur in the event model.
We show how the two models compare in the context of a
component language in [2, §7].



The contributions of this paper are (1) the demonstration
that the event model1 is not the right programming model
for protocol composition frameworks because of the mix-
up of events in protocol graphs and the unsatisfactory han-
dling of peer interactions (2) the proposal of an alternative,
header-driven model solving these problems and with better
compositional properties.

Acknowledgments. We thank Christophe Gensoul for im-
plementing the first NUNTIUS prototype and Rachele Fuz-
zati, Olivier Rütti, André Schiper, Paweł Wojciechowski for
their feedback.

2 Requirements

Composition. Previous research [6, 7] shows that the mod-
ular decomposition of group communication middleware
results in complex interactions between various components
(protocols) from different abstraction levels. These compo-
sitions are out of the scope of simple stack-based composi-
tion schemes. In particular, services of protocols are some-
times used by many other components, leading to graph-
based composition schemes.

In order to tackle this complexity, a powerful component
language is needed. This language should allow the defini-
tion of parametric and hierarchical components and provide
information hiding mechanisms to hide complex composi-
tions. Composing protocols should be an easy task. In par-
ticular we would like to have coarse-grained composition
mediated by interfaces instead of fine-grained sequences of
input-output binding instructions.

Hence we are looking for a programming model that sup-
ports, on top of it, the definition of a component language
satisfying these requirements.

Peer interaction. Let us respectively refer to a protocol re-
questing a service of another as the client and the server
protocol. A particular and recurrent interaction seen be-
tween protocols is peer interaction. Conceptually, in a peer
interaction, a protocol A interacts with its peer as if it was
performing a remote procedure call (Fig. 1, left). Con-
cretely, A issues a request to a local server protocol C,
which results in an interaction between their peers (Fig. 1,
right). An example is the send/deliver scheme of a commu-
nication protocol.

Most protocols work by interacting with their peers.
These interactions almost always occur via peer interactions
to benefit from the properties provided by other protocols.
As such, expressing this pattern in our programming model
should be clear, explicit and concise.

1Which should not be equated with a reactive programming model, our
proposal is also reactive.

A

C

A

C

A

C

A

C

Conceptually Concretely

Figure 1. Peer interaction, execution paths

3 Misfit of the event model

Event-driven primitives. In an event-based programming
model a program is a sequence of event definitions, event
handler definitions and event bindings. The latter bind han-
dlers to specific events. When an event is triggered, all han-
dlers bound to it are executed thereby possibly triggering
new events. In this model, components aggregate and struc-
ture events and event handler definitions as well as event
bindings.

The discriminating feature of the event model is that
none or many handlers can be bound to a single event and
vice versa. Many semantical variations can be devised on
these constructs. Static versus dynamic binding, serial ver-
sus concurrent execution of handlers, etc, but these differ-
ences are not relevant to our discussion. Note that in prac-
tice, protocol frameworks [4, 8] may use additional interac-
tion schemes and structuring entities (e.g. channels [8]).

On the one hand, in stack-based compositions of pro-
tocols one does not use the one-to-many interactions pro-
vided by the event model. On the other hand, this inter-
action scheme is not adapted to graph-based compositions
where a server protocol offers its service to more than one
client protocol.

The event routing problem. The problem lies in the way
a server protocol responds to a request issued by a client
protocol. The server’s response is returned by triggering
an event to which the client can bind a handler. Now if
two protocols A and B use the same service provided by
C (Fig. 2, left), they will both bind an event handler to this
event. If A issues a request on C, both A and B will get the
result (Fig. 2, right). The problem is that this behaviour is
in most cases unwanted. It seems quite natural that requests
issued by two unrelated clients should not interfere. Thus
in the example above a mechanism needs to be introduced
so that B can discard the (wrong) data it gets.

Of course the event routing problem does not show up in
stack-based compositions since each protocol has at most
one client. But in complex graph-based compositions [7],
this problem occurs frequently. In a component language
with parametric components, the problem is even more



C

A B

C

A B

1

2

Figure 2. The event routing problem

acute: a protocol C can easily be given as a parameter
to more than one parametric protocol and the usage of
C’service by those should also not interfere.

Ad hoc solutions. There are solutions to this problem in
the event model. However, these solutions are ad hoc and
neither satisfactory nor elegant (see [2, §4]).

Wrong interaction scheme. The event model allows more
complex interaction patterns than, for example, function ap-
plication. But it does not match what we need most of the
time. It has been argued [6] that most bindings are one-to-
one, a single handler is bound to a single event. Moreover,
the indirections introduced by the event binding mechanism
significantly complicate and obfuscate the implementation
and composition of protocols (see §4, [2, §7]). Finally, if
really needed, a one-to-many pattern is easy to implement
on top of a functional or object-oriented language.

The event model can be seen as an observer pattern [3].
The intent of this pattern is to “define a one-to-many depen-
dency between objects such that when one object changes
state, all its dependents are notified and updated automati-
cally”. The use of this pattern in our setting is clearly not ap-
propriate since, as we said above, state changes of a server
protocol should not, in most cases, affect all its clients.

The observer pattern is also used to develop loosely cou-
pled components. But the modular decomposition of a com-
plex protocol results in tightly coupled components, in the
sense that the role and properties of the sub-protocols are
clearly defined.

4 The header-driven model

The compositional shortcomings of the event model lead
us to seek a new programming model for protocol frame-
works. By contemplating how badly the event model man-
ages peer interactions, we get to our new proposal.

Peer interaction in the event model. Protocols typically
encapsulate communication data for their peers in messages
and headers. A message is a list of headers and a header is
a typed container for data. In a peer interaction a sequence
of protocols is traversed. Starting in the first protocol with
the empty message, each protocol pushes a specific header

R

U

R

U

R

U

R

U

Event model Header-driven model

Figure 3. Composition bindings

onto the message with the data for its peer and triggers an
event to pass the resulting message to the next protocol. The
last protocol of the sequence sends the message to the peer
node with inter-node communication. On the peer node,
the reversed sequence of protocols is traversed (provided
bindings are correctly specified). Each protocol pops from
the message the header transmitted by its peer and triggers
an event to pass the resulting message to the next protocol.

A concrete example is given by the composition depicted
in Fig. 3, left. Black arrows denote the explicit bindings —
dependencies — specified to compose the two protocols.
Protocol R offers reliable node-to-node communication and
U unreliable node-to-node communication. Conceptually
R wants to give data to its peer by “calling” a handler recv
on the other node. Protocol R packs data onto a message
and gives it to the lower level component U by triggering
an event. U sends the message with inter-node communi-
cation. Upon reception on the peer node, U ’s peer triggers
an event, hopefully bound at composition time to R’s recv,
to deliver the message to R. The way the event model
manages peer interactions has the following drawbacks.

• Compositionally suboptimal. The designer of R knows
that recv should handle the data given to U . But,
because of the indirections introduced by the binding
mechanism, this cannot be explicitly coded in the pro-
tocol. Instead, the designer writes the handler recv and
hopes that the right bindings will be done during com-
position. This is compositionally suboptimal because
a constraint known at design time has to be explicitly
enforced later, at composition time.

Furthermore, handler recv is completely internal to the
protocol R (and its peers). Yet it needs to show up in
the interface of the protocol so that it can be bound
by the composer to an event of U . This goes against
abstraction since it prevents information hiding.

• Event routing problem. If U (or R) is used by more
than one client we get routing problems.

• Failing or mixed up header deconstruction. Messages
are heterogeneous lists of data. They cannot be given



a more informative type than “msg”. A composer may
incorrectly bind recv to an event unrelated to U but
whose type matches msg. In that case, two bad things
may happen. Either a runtime type error occurs be-
cause recv tries to pop a header from a message whose
structure does not match its expectations. Or recv pops
a header of the right type but that is not intended for R
possibly resulting in erratic behaviour.

From events to headers. Protocols often use a single han-
dler to manage the reception of peer interactions. Never-
theless, some protocols need to send different kind of data
via this single handler. In order to do so, they introduce a
tag name in the header to indicate the kind of information
they transmit. Since a header usually remains internal to
a protocol and its peers, it is not restrictive to impose that
each header shall be named, and that each name shall be
declared by at most one protocol in a composition. A com-
position satisfying these constraints has the following inter-
esting property. If we look at the names of a message’s se-
quence of headers, we can approximately see the sequence
of protocols — the route — that will handle the message
when it is processed by the peer composition. This means
that there is no need, for the composer, to explicitly bind
the upward flow of events. In other words the message’s
sequence of headers drives its processing in the protocol
graph.

The event model prevents us from exploiting this prop-
erty. Thus, instead of having events at the core of our inter-
action scheme, we should have headers. This is the essence
of our proposal.

The essential ingredients of a header-driven model are
headers and messages. A message is a list of headers. Head-
ers are named containers carrying statically typed data. To
construct a header, its name must be defined. A header han-
dler defines a header name and associates a computation to
the deconstruction of all messages starting with that name.
Message dispatch is the interaction scheme, it deconstructs
messages. When a message is dispatched, the unique header
handler corresponding to the head of the message is invoked
with the head’s data and the tail of the message as argu-
ments. Compared to the event model we can say that (1)
header handlers replace event handlers (2) message dispatch
replaces event triggering and (3) the event binding mecha-
nism is dropped.

In a header-driven model, the peer interaction described
above occurs as follows. Protocol R pushes data onto a
message using a header recv. Unlike in the event model,
this specifies which header handler should be invoked on
that data at the peer node. R gives this message to U us-
ing, for example, function application. U sends the message
with inter-node communication. Upon reception on the peer
node, U dispatches the message which becomes automati-

cally deconstructed at the right place by invoking the unique
header handler recv.

Mirroring the defects of the event model, our proposal
has the following benefits.

• Better compositional properties. Messages “know”
where they need to be deconstructed. Therefore no
bindings for the upward control flow need to be spec-
ified. This removes one dependency between the two
components (Fig. 3, right). Besides, handler recv be-
comes truly internal to the protocol R and its peer, it
does not appear in the interface.

• No event routing problem. If another protocol S uses
U , it packs data into one of its own headers h. When
U ’s peer dispatches that message, it is automatically
routed to the handler h of the peer of S.

• Correct header deconstruction. A header is always
constructed with the right type in the scope of a header
handler for it. For any header occurring in any mes-
sage, there is exactly one corresponding handler. This
implies that at runtime, neither the deconstruction of a
message can fail, nor can a handler get unrelated data.
Both the runtime type errors and erratic behaviours
found in the event model cannot occur.

For concrete informations about header-driven primitives
and their implementation see [2, §6].

References

[1] F. Brasileiro, F. Greve, F. Tronel, M. Hurfin, and J.-P.
Le Narzul. Eva, an event-based framework for developing
specialized communication protocols. In Proc. IEEE NCA’01,
2001.

[2] D. C. Bünzli, S. Mena, and U. Nestmann. Protocol compo-
sition frameworks, a header-driven model. Technical Report
IC/2005/007, http://ic.epfl.ch, Epfl, 2005.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1995.

[4] M. A. Hiltunen and R. D. Schlichting. A configurable
membership service. IEEE Transactions on Computers,
47(5):573–586, 1998.

[5] N. C. Hutchinson and L. L. Peterson. The x-kernel: An archi-
tecture for implementing network protocols. IEEE Transac-
tions on Software Engineering, 17(1):64–76, 1991.

[6] S. Mena, X. Cuvellier, C. Grégoire, and A. Schiper. Appia
vs. cactus : Comparing protocol composition frameworks. In
Proc. of SRDS, 2003.

[7] S. Mena, A. Schiper, and P. T. Wojciechowski. A step to-
wards a new generation of group communication systems. In
Middleware 2003, volume 2672 of LNCS, 2003.

[8] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible
protocol kernel supporting multiple coordinated channels. In
Proc. of ICDCS’01, pages 707–710, 2001.

[9] J. Pereira and R. Oliveira. Object-oriented open implemen-
tation of reliable communication protocols. OOPSLA’97 Ws.
on Dependable Distributed Object Systems, Oct. 1997.

http://ic.epfl.ch

	Introduction and summary
	Requirements
	Misfit of the event model
	The header-driven model

