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Abstract. Self-replicating structures in cellular automata have been ex-
tensively studied in the past as models of Artificial Life. However, CAs,
unlike the biological cellular model, are very brittle: any faulty cell usu-
ally leads to the complete destruction of any emerging structures. In
this paper, we propose a method, inspired by error-correcting-code the-
ory, to develop fault-resistant rules at, almost, no extra cost. We then
propose fault-tolerant substructures necessary to future fault-tolerant
self-replicating structures.

1 Introduction

Self-replicating structures in cellular automata have generated a large quantity
of papers [10]. In the Artificial Life field, most of these have been devoted to the
study of the self-replicating process in itself, as a model of one of life primary
property. The underlying motivation of such researches could be expressed as
a question: What are the minimal information processing principles involved in
self-replication 7

However, if life was an awe inspiring model, simplification was a prime con-
straint in all these studies, not only for obvious practical reasons, but also as a
guide to extract the quintessential ideas behind self-replication. We believe that
an always present quality in natural systems was omitted more for the former
reasons than the latter principle: robustness.

Cellular automata are discrete time and space grid in which all cells update
synchronously according to a deterministic rule. No faults ever occurs in the
transition rule nor on the cell current state. Nevertheless if we are to look at
real biology, it appears at all levels that either insensitiveness to faults or self-
repair is a prime condition of survival, the environment being extremely noisy
and uncertain. Fault resistant cellular automata designed in the past[2/3/4] are
based on hierarchical constructions, i.e., an alteration of the inner architecture
of the CA. In this paper, we rather propose to develop fault-tolerant transition
rules, keeping the classical CA unchanged. Thereby we create structures that

J. Kelemen and P. Sosik (Eds.): ECAL 2001, LNAT 2159, pp. 90-09] 2001.
© Springer-Verlag Berlin Heidelberg 2001


http://lslwww.epfl.ch

Fault-Tolerant Structures 91

are fault-tolerant in their functioning itself, at a minimal cost in terms of space,
time or memory.

In section 2] we will accurately define what we mean by a faulty environment,
and evaluate its impact on classical self-replicating structures, such as Langton’s
loop. In the following section, after a short presentation of the error correcting
code theory, we will use it to propose a general model of fault-resistant rules.
Finally, in section [4] we first present general practical constraints, and then
propose two essential fault-resistant substructures for self-replication: a data pipe
and a signal duplicator, showing the specificities of such realizations situations
compared to the theoretical model.

2 A Non-deterministic Cellular Automata Space

The idea of fault-tolerance is rather vague and our intention in this section is not
to state any definitive definition. Rather, we propose here, first of all, to delimit
the scope of validity of our work, and, secondly, to briefly argue of its validity
as a practical environment. Besides, we will show that this noisy environment is
more than enough to irrevocably perturbate and thus destroy any of the most
famous self-replicating structures.

2.1 Definition of the Faulty Environment

Formally cellular automata are d-dimensional discrete space, in which each point,
called a cell, can take a finite number of state ¢q. Each cell updates its own states
according to the states of a fixed neighborhood of size n following a deterministic
rule. A CA is called uniform when this rule is the same for every cell. Hence a
CA may be defined by its transition rule S:

S:q" —q

In CAs, faults may basically occur at two levels : the synchronization (time)
and the cell transition rule (space). We do not cater for the former problem in
this article, though we argue in a paper to come [1], that a simple time-stamping
method exploiting its inherent parallelism correct efficiently all synchronization
faults. As for the latter problem, which could be further divided into reading and
writing errors, we model it as a non-deterministic rule. More precisely, there is
a probability of faults py, such that any given cell will follow the transition rule
with probability (1 — ps), and take any state with probability ps. This model,
though apparently catering only for writing errors, do simulate perfectly reading
errors. One may object that we did not mention the major fault problems when a
cell simply stops functioning at all. This is not our purpose to treat that kind of
"hardware’ problem here, but we may say that our model could be implemented
over an embryonics tissue[6] which deals with this kind of malfunction. Besides,
one may note that such a permanent failure is not, in itself, fatal to our system,
but only weakens all intersecting neighborhoods.
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2.2 Classical Self-Replicating Structures Behavior

In this section, we show the brittleness of some famous and less famous classical
self-relicating structures. We first consider the Langton’s loop[5], we then move
on to the more complex Tempesti’s loop[L1] to finish with one of the simplest self-
replicating loop that was described by Chou and Reggia[8]. We do not consider
the seminal work of Von Neumann[7] for obvious practical reasons. However one
may note that the very accurate nature of that latter work leads to a “natural”
brittleness.

Applying this model to the landmark self-replicating structures of Langton
demonstrates a high sensitivity to failure. Following our model of noisy environ-
ment described above, a probability of fault p¢ as low as 0.0001 shows a complete
degradation of the self-replication function. Tempesti’s structure shows exactly
the same type of failure for an even lower py. The main cause of this total fault
intolerance is due to what we may call irreducible garbage remains. Both these
loops have as default rule, no change. When confronted to an unexpected neigh-
borhood, i.e., when the fault only generates surprise and not confusion, the cell
remains in its previous state. Then garbage that appears in the void (in the
middle of a quiescent zone) is irreducible and remains forever, or at least, and
that is the source of this higher-than-expected sensitivity to faults, until the loop
meets it for its inevitable loss.

The Chou and Reggia loop[8] (p.286, fig. 1g), begins to show significant
degradation with a probability p; of 0.001. This relative resistance is only due
to its small size (3x3), and any fault affecting the loop almost inevitably leads to
its complete destruction. One may note that this loop suffers, as the preceding
examples, from irreducible remains.

It is clear that these rules where not designed to be fault-tolerant and thus
their size is their only means of defense. Effectively, their probability of failure is
directly proportional to their size, and may be approximated by (1—(1—pjg)®¢).
Of course this probability to be accurate should be augmented by the number of
neighboring cell, and, as we saw, by the probability of encountering irreducible
rEMAINS.

We now present how to design fault-tolerant structures.

3 Fault-Resistant Rules

In a noisy environment, as defined earlier, a cell cannot trust entirely its neigh-
borhood to define its future state. In other works [4J2]3], where the aim was to
design generic faultless cellular automata, a hierarchical construction was used,
e.g., a meta-cell of dimension 2 creates a fault-tolerant cell, to the cost of a lot
more complex architecture and greater computation time. However our approach
here is not to create a fault-tolerant CA architecture, but rather to design the
rules of a classical CAs so that the emergent, global behavior is preserved. That
latter choice allows both a reduced computation time and lesser memory space
than the former, the cost being a resulting CA specific to one task. In this section
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we first briefly present some element of error correcting code theory, on which
we base our design of fault-tolerant rule presented in section B.2.

3.1 Error-Correcting Code

The idea behind the error correcting code theory is to code a message so that
when sent over a noisy transmission channel, at reception, one can detect and
correct potential errors through decoding, and thus reconstruct the original mes-
sage.

Formally, let X' be an alphabet of ¢ symbols, let a code C be a collection of
sequence ¢; of exactly n symbols of X, and let d(c;, ¢;) be the Hamming distance
between ¢; and ¢;. We call d(C) the minimal distance of a code C which is defined
as min;«; d(c;, ¢j), ¢, ¢; € C. Then the idea of error-correcting code, introduced
by Shannon[9], is to decode, on reception, the word received by the closest word
belonging to C. Using this simple strategy with a code C of minimal distance d,
allows the correction of up to (d — 1)/2 errors.

In this theory, one may see that the number of word in C, M, and the minimal
distance d, plays against one another for a fixed n and ¢. To avoid a waste of
memory space, in our fault-tolerant rules developed in the next subsection, it
would be useful to maximize M for a given d. However it is not always possible
to determine it a priori, but for d = 2e + 1, so that we can correct e errors,
this maximum M, A4(n,d), is bounded. The lower and upper bounds known as
Gilbert-Varshamov|[I2] bounds, are:

n

q

S(e-r T Sy

=0

3.2 Theoretical Aspect of Fault-Resistant Rules

A rule r in a 2-dimensional cellular automata is the mapping between a neigh-
borhood, v, and a future state, ct, that, if we use Moore neighborhood, may
be written as (v1,...,v9 — ¢*). In the noisy environment, as defined in section
21, the values vy, ...,v9 may be corrupted, thereby inducing in most cases, a
corrupted value of ¢, propagating in time the original error. The idea behind
this paper is to see ¢t as the message to be transmitted over a noisy channel,
and v, ..., vg as the encoding of the message. Then it becomes clear that if this
encoding does respect the error correcting code theory constraints exposed above
then, even if the neighborhood values are corrupted, it will still be decoded into
the correct ¢ future state and the original errors will not last further than one
time step.

Of course, the constraints will depend on the number of errors, e, we want to
be able to correct for a given neighborhood. We define (vy,...,v9 — ¢¥,¢) to be
the transition rule r resisting e errors. In consequence, we also define V (r) to be
the set of rules co-defined by r, V(r) = (Z — ¢¥) | d(z, (v, ...,v9)) < €). Then
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it appears clearly that if each rule of the co-defined set of rules is at a minimal
hamming distance of 1 of any other rule of the co-defined set of rules, that is,
if each main rule is at minimal hamming distance of 2e + 1 of any other main
rule, then, reinterpreting the result of Shannon above, we can guarantee that
the CA thus defined will be able to function correctly providing that at most e
errors happen at any one time step in each neighborhood. As one may note, the
size of V(r) is rather large. More precisely, for a neighborhood of size n, and an
alphabet of ¢ symbols we have:

o =3 (3) - @

k=0

A conflict appears when the intersection between every co-defined set of rules
is not empty. For instance, for a von Neumann neighborhood, r, = (03234 —
1,1) and ro = (03034 — 2, 1) are in major conflict as the neighborhood (03234)
lies both in V(1) and V' (r2). To avoid wasting too many possible different neigh-
borhoods, we distinguish major and minor conflicts. A major conflict appears
when the future state of the conflicting rules are different. However minor con-
flicts, when future states of the conflicting rules are identical, are reasonable as
it does not prevent error correction. Thus, we have the following reinterpreted
Shannon’s theorem:

Theorem 1. Let R be all the transition rules of a CA C, then if we have:

Vigj(ri = ¢),(rj = ¢/) €R, d(ri,rj) >2e+1or¢f =cf

we can guarantee that the CA C will correct up to e errors occurring at any one
time step in any neighborhoods.

We have now defined theoretically how to conceive a fault-tolerant structures
on a classical CA. In the following section, we study the practical application
of the above defined constraints to peculiar substructures of interest for self-
replication. On this more practical aspect of the question, it would be interesting
to know how many different rules are available for use. If we do not take into
account the distinction of minor and major conflict, and as we need all the rules
to be at a hamming distance of d = 2e+ 1 to guarantee distinct co-defined set of
rules, the number of rules available is given by the bounds of Gilbert-Varshamov
(eq. ). Nevertheless these bounds are rather large, and do not include the large
advantages brought by the minor conflict exception. In any case the waste of
possible rule is usually quite important self-replicating structures. If we look at
classical structures, such as Langton’s loop, the number of used rule compared to
the number of rules available (namely ¢"), is well within the Gilbert-Varshamov
bounds for a minimal number of errors e = 1. On the other hand, even for e = 1,
if the probability of failure of a cell is py, and the size of the neighborhood
is n, then the probability of failure of our structure, whatever the size of this
structure, is reduced, roughly, to 1 — ((1 — ps)?) — 9% ps(1 — py)®.
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4 Fault-Resistant Structures

In this section, we propose to apply practically the theoretical ideas put forward
in the previous section. We will only consider rules that can correct up to 1
error in their neighborhood, as it seems a reasonable compromise between the
fault-tolerance capabilities and the implied “waste” of rules. In the same way
of thinking, we will only consider two-dimensional Moore neighborhood, as it
provides a wealth of rules compared to the von Neumann neighborhood at no
real additional cost in terms of computational time, memory space or physical
complexity.

The aim of this research is to develop a fault-tolerant self-replicating struc-
ture. Firstly, we will study some common problems and desirable properties to
construct such structures. Secondly, in section E£2], we show how to practically
construct a fault-tolerant data pipe, a structure essential to convey information.
Finally, in section B3] we propose a fault-tolerant signal duplicator, central to
the whole idea of self-replication.

4.1 Properties, Methods, and Problems

Our CA’s structure are quite classically defined as an “active” structure in a pool,
possibly infinite, of quiescent cells (henceforth represented by the ’.> symbol).
Hence the first necessary rule is 74 = (......... — ., 1). Its co-defined set of rules
V(rq) defines all the rules with one active cell. It has the advantage to cover
what we called in section 22, the irreducible remains. Effectively, any fault
creating a single active cell in a quiescent neighborhood will be reverted to
the quiescent state at the next time step. This eliminates the main problem
encountered by the non fault-tolerant structures. Although the encounter of our
fault-tolerant rules with the remains would not be as deadly as for the classical
loops, this prevents accumulation of errors in the same neighborhood over time.
Nevertheless, it is important to note that, consequently to the definition of r,
we cannot use any rules with less than 3 active cells in its neighborhood. Its
co-defined set of rules would otherwise intersects with V'(r,) and create a major
conflict unless, of course its future state is ’.". This last constraint which may
be seen as a disadvantage in terms of the global size of the structure, is not
much of a problem on the point of view of error-correction as the fault-tolerance
capabilities of our structures only depend on the size of the neighborhood and
not of the global structure.

That latter implied property brings us to a more general remark about the
method to use when creating fault-tolerant structures. If we take figure [Il, one
would be tempted not to define the rule 4 = (........ M — .,1) arguing that it is
covered by V(r,). However, this would be mistake as V(r1) # V(r,), we would
then lose our guarantee of error correction. Hence, minor conflicts are handy as
they allow us to define rules such as r; and r, simultaneously, nevertheless they
do not make the definition of 71 unnecessary if we are insure the fault-tolerance

property.
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Besides these kind of tricks one should use, we are currently developing a more
formal method to ’automatically’ create fault-tolerant rules. At the moment, the
semi-algorithm goes as follows: When going from the structure from one time
step to the next one, we define the rules (with e = 1) for each cell in the structure
and its neighborhood, going from left to right and top to bottom. After each
rule definition, we test for major conflicts. This way to proceed prevents a lot
of useless work, but does not discard the design by hand of the initial structure
and its successors.

Fig. 1. Structure and its neighborhood

4.2 Safe Data Pipe

Now that we have seen the theoretical aspects and some general practical con-
straints, we are able to define a fault tolerant data pipe. These kind information
transmission structures are essential for self-replicating loops. A typical example
of these is given in figure 2

0+0000 00+000 000+00

t t+1 t+2

Fig. 2. Usual data pipe

One sees immediately the problem with that kind of

structures. It implies the two following rules, r1 = (0..0...+. — +,/1) and
rg = (+..0...0. —0,1), which obviously provoke a major conflict. In fact, we
remember that, for e = 1, each rule must be at a minimal hamming distance of
3. This constraint deals also with the quiescent rule constraint.

We can see in figure [3] an example of a fault-tolerant data pipe for e = 1
addressing that constraint. It is able to transmit trains of data. As one may see
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two types of data are transmitted in this example :L which uses 3 states to move
itself, and + which uses 4. As we will explain later, the 4 states are needed as it
is the head of the data train.

000{00[00 000}00100 oooo{oo[o

oo{LO[+00 000}L0]DO ooo{LO[+0

000{00[00 000}00100 oooo{00[0
t=0 t=1 t=2

Fig. 3. Fault-tolerant data pipe

We will now have a more detailed look at this fault-tolerant data pipe:

— at t = 0, the upper and lower “wings” are necessary to maintain the ’0’ state
situated at the ’east’ of the head of the signal, the '+’state. The state ’0’ is
designed to conduct the head.

— at t = 1, we have a transitory structure. This transition is necessary to
maintain the integrity of the pipe. The upper and lower “wings” not moved
yet would create a conflict if they were still in the state '[’. We would end
up with the conflicting transition rules (0..00D[[.—[,1) and (0..000+[.
—0,1). This transitional step is there to create a diversity in the neighbor-
hoods, thereby suppressing all conflicts.

— at t = 2, we get back to the original the structure, the train of signal (that
one may define as L+) has moved forward.

As we noted earlier, a supplementary state was required for the head of the
signal, the data '+’, than for the rest of the signal 'L’. It can be clearly seen why
if we imagine the situation without that supplementary state (see figure [).

000}001000
000}L0]+00
000}00]000

Fig. 4. Problem with the head signal

In this situation we have to define the rule (0000000+0 — 0, 1), which then
conflict with the rule (000000 [+[—1,1) defined at the preceding time step. The
transitory state ’D’ solves that conflict. The neighborhood of L, and any other
following signal being more diverse, that supplementary transitory state is use-
less.



98 D.C. Biinzli and M.S. Capcarrere

4.3 Signal Duplication

Now that we have, through the detailed definition of a fault-tolerant data pipe,
seen the practical aspects of making fault-tolerant structures, we propose in
this last section to quickly view a fault-tolerant signal duplicator. This peculiar
substructure is always present in self-replicating structures. Actually, its the
core of self-replication. The data pipe is there to maintain the structure, the
duplicator is there to start a new construction, the replicate. We can check that
this rather more complex structures only requires the use of two more states, C
and K, besides the state needed by the data pipe described above.

ooo..... 0oo..... ..000..... ooo.....
000..... 000..... ..000..... 000.....
ooo..... 0oo..... ..000..... ooo.....
ooo..... ooo..... ooo..... ooo.....
ooo..... ooo..... ooo..... ooo.....
D]ODCCCDDDDU DO[OCCCDODOD OD]GCCCODDGD 000[CCC00000
0]D00C000000 0[+00C000000 00]D0C000000 00[+0C000000
010000000000 00[000000000 00]000000000 000[00000000

000..... 000..... ..000..... 000.....
000..... 000..... ..000..... 000.....
000..... 000..... ..000..... 000.....
000..... 000..... ..000..... 000.....
.000..... .000..... .000..... .000.....

ooo]cccoooou 0000+cc00000 oooooccooooo UOUODDCUOUOD
0001DC000000 000 [+C000000 0000]+000000 0000[D000000
000100000000 0000[0000000 000010000000 00000000000
t=4 t=5 t=6 t=17
000..... 000..... ..000..... 000.....
000..... 000..... ..000..... 000.....
000..... 000..... ..000..... 000.....
000..... 000..... ..000..... 000.....
000..... 000..... oDn0..... [+[.....
DOOO+KCDOOOU OUDOK+KOUDUO 0000[]]00000 UDUDC[C[DUDO
00000KDO0000 00000 [+00000 00000C]D0O000 00000C [+0000
000001000000 000000 [00000 000000100000 0000000 [0000
t=28 t=9 t =10 t=11
000..... 000..... .000..... 000..... 000.....
000..... 000..... ..000..... 000..... oDo.....
000..... 000..... ..0D0..... [+[..... 117.....
ong..... [+[..... 110 ofo..... 000.....
11 .o[0..... ..000..... 000..... 000.....
ooooccc]oooo ooooccco[ooo ouooccco]ooo oooucccoo[uo oooocccoo]oo
00000C0]D000 00000C0 [+000 00000€001D00 00000C00[+00 00000C0001D0

000000010000 00000000000 000000001000 000000000[00 000000000100

t=12 t=13 t=14 t=15 t=16

Fig. 5. Duplication of a signal



Fault-Tolerant Structures 99

5 Concluding Remarks

We have shown that it is possible to create fault-tolerant structures by acting on
the rules only. While not totally free of costs in terms of memory or computa-
tional time, the advantage of this method, in these terms, compared to classical,
i.e., hierarchical, fault-tolerant CAs is evident. In terms of error correction capa-
bilities, the rule-based method renders the probability of failure proportionate
to the, relatively very small, size of the neighborhood. However, as we have seen
in section [£1] the possibility of algorithmically, and thus automatically, develop
fault-resistant rules is still embryonic. Further work will pursue in this direc-
tion, thereby eliminating the main drawback of our method. Effectively, at the
moment we only have task specific hand-made rules.

The two substructures presented are at the core of self-replicating loops,
and we should be able in the near future to present a complete self-replicating
structure resistant to a noisy environment. We believe that this will be attained
with no more complexity, in terms of the number of state or the CA architecture,
than most classical loops presented to date.
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