
the mod

daniel c . bünzli

Dra� of January 15, 2008

1 introduction 1

2 assumptions 2

3 concepts 2

4 the mod for package users 3

5 the mod for package publishers 5

6 package file reference 7

7 todo 9

Bibliography 9

1 introduction
�e mod is a proposal for a source level, distributed, localized and minimalis-
tic package system to share OCaml modules among developers. What does
this mean ?

Source level. �emod onlymanages packages of OCaml andC binding source
code.

Distributed. �ere is no central repository of packages. Anyone who can
publish on a web server can publish a package.

Localized. Packages are (at least conceptually) managed per project, not per
machine. In a project the contents of a package can be installed, uninstalled,
upgraded and downgraded by issuing a single command. Project dependen-
cies become explicit.

Minimalistic. �e architecture of the mod is simple and easy to understand,
it puts the user in control. It is designed to solve the average use case.

Developers. �e mod is for developers, it is not a mean to install so�ware for
the end user.



�e goal of the mod is to facilitate module sharing and encourage the modu-
larization and atomization of packages. A package containing a single module
without any dependencies should not be seen as an anomaly however the
e�ort spent to be able to use it or publish it should be proportional to its size.
�e mod seeks to minimize this e�ort.

Although it may provide hints and means for package standardization,
the mod tries to be unintrusive with respect to the development practices
of its users. �e mod is about providing a minimal infrastructure to share
modules.

2 assumptions
Running the mod depends only on the standard OCaml distribution. It relies
entirely on ocamlbuild to build packages. Modular ocamlbuild plug-ins
will be needed to simplify the use of packages that contain C bindings.

3 concepts
�e mod is centered around two kinds of resources: packages and versions.
A package is accessed via an uri like http://example.org/example. A
version is accessed via a package. Packages and versions can be seen as
dictionaries mapping keys to values.

A package de�nes a time ordered sequence of versions. It has at least two
keys: identi�er (pid) and versions.

• Identi�er is a globally unique identi�er. It should follow the reverse reverse do-
main name convention, e.g. mypackage.example.com. �e identi�er need
not be related in any way to the uri used to access the package — packages
may be accessed via multiple uris.

• Versions is a time ordered list of versions of the package.

A version is a particular release of a package. It has at least two keys:
identi�er (vid) and contents.

• Identi�er is an identi�er unique in the package. It must have the form
yyyy-mm-dd [hh:mm:ss] and denote the utc time at which the version
was published. �e granularity of time for the identi�er should only be as
�ne as to allow to unambiguously identify each version. �e latest version of a
package is the version with the latest time stamp. Using timestamps as version
identi�ers frees the developer eager to share from naming duties. Labels can
be used to implement a custom versioning scheme (see below).

• Contents is a couple (uri, digest) made of an uri pointing to an archive and a
cryptographic digest of it. �e contents of the archive knows how to build
itself with ocamlbuild (no other build system is supported).

A version may need a version of another package to provide its service. �ese
dependencies are stored in the dependencies key of a version.

2



• Dependencies de�nes a list of versions on which the version depends. A
dependency is a quadruplet (uri, pid, vid, digest) made of a package uri, a
package identi�er, a version identi�er, and the digest of the version content.
Two dependencies are equal if their three last components are.

A project can only depend on a single version of a package. A con�ict occurs
if there are two dependencies with the same package identi�er but a di�erent
version identi�er.

Both packages and versions have a key called labels. Labels are short
identi�ers to attach information to resources. In packages labels should make
a quick description of it, for example camlzip could have the following labels,
zip, gzip, compress, libz, bindings, lgpl+static. In versions, labels
can be used to implement a versioning scheme in addition to the default one
provided by timestamps. Version labels could be anything like 1.1.2, beta,
stable, bugfix, etc.

4 the mod for package users

�e general invocation scheme of the mod is :

> mod [cmd] [resource]

> mod [key] [resource]

�e �rst form is used to act on the system while the second one is used
to query resources. Pre�x speci�cation of commands, keys and resource
identi�ers is allowed as long as it is not ambiguous. For example rem for
remove or mypa for mypackage.example.com.

�emodmust be invoked in the directory where you invoke ocamlbuild.
�is will eventually create the mod directory at that location. It has the follow-
ing layout :

• mod/deps �le listing the dependencies of your project. �is �le becomes part
of your build system and should be tracked by your revision control system.

• mod/ files/ directory containing downloaded package �les and extracted
archives of version contents. �e information therein may be updated and
regenerated, it should be ignored by your revision control system. You can
also safely remove this directory manually.

Once you have a hand on the location of a package you can add a dependency
on it by invoking the command add that will add the latest version of the
package as a dependency and recursively add its dependencies to the project.

> mod add http://example.org/example

Dependencies:

mypackage.example.com

2007-11-11 1.0

3



�is downloads only the package �le and those of its dependencies, not the
actual version contents. �e only way to explore packages is to add them as a
dependency as above, this minimizes command complexity. A package and
its dependencies can be easily removed with remove.

Now that we have the package dependency we can ask for its di�erent
versions by using the versions key.

> mod versions mypa

mypackage.example.com

Versions:

2007-11-01 zero

2007-11-11 1.0 stable

�e dependencies of a particular version can be listedwith the dependencies
key. Unambiguous version labels can be used instead of version identi�ers
(in the example below zero instead of 2007-11-01).

> mod dep mypa zero

mypackage.example.com 2007-11-01 zero

Dependencies:

None.

To switch to the zero version of our package we just add the dependency.
Since a project can only depend on a single version of a package this will
remove the other dependency (theremay bemore steps involved if the version
was installed or others depended on that version) and add the new one.

> mod add mypa zero

Dependencies:

mypackage.example.com

- 2007-11-11 1.0 stable

+ 2007-11-01 zero

To install the �les of a dependency simply type:

> mod install mypack

�is will download the archive of the version and extract it in the directory
mod/ files/mypackage.example.com/. More complex packagesmay also
go through a con�guration step to locate system libraries (mainly for C stubs).

To use the package youwill have to look the documentation in the package
(if we impose more on packagers a new key could be introduced). However
for pure OCaml modules it will usually be su�cient to add the following to
your ocamlbuild tags �le :

<mod/_files/mypackage.example.com> : include

To check for new versions, package �les need to be refreshed manually
with the refresh command.

4



> mod refresh mypack

mypackage.example.com

No new version.

To be informed of new versions automatically you can put the uri location of
the package in your news feed reader as package �les are in fact just Atom
news feeds [1].

If you want to remove the version’s �les you can type :

> mod uninstall mypack

�is will remove the �les of the version but it does not drop the dependency.
You can quickly reinstall by issuing install.

�e following command schemes are all you need to know to use the
mod.

• mod dependencies ([pid] [vid])* lists the dependencies of the given
package versions. If none is provided, lists all the dependencies of the project.

• mod add [uri|pid vid] adds or replaces the given package dependency.
If [vid] is not present the latest version of the package is used.

• mod remove [pid]* removes the given dependencies. If [pid] is not present
all dependencies are removed. If you want to change the version of a package
do not remove it, use add.

• mod refresh [pid]* refreshes the given packages by downloading their
package �les.

• mod upgrade [pid]* refreshes the given packages and adds their latest
version as a dependency. Upgrades every dependency if no pid is speci�ed.

• mod [key] [pid] [vid] retrieves the value for the key of the given package
or version.

• mod install [pid]* install the dependency on the given pids. Installs
every dependency if no pid is speci�ed.

• mod uninstall [pid]* uninstall the dependency on the given pids. Unin-
stall every dependency if no pid is speci�ed.

• mod clean removes mod/ files.

5 the mod for package publishers
�e system tries tomake it easy for developers to publish packages and inform
others that they were updated. In order to do so the mod uses Atom news
feeds [1] as package �les. One caveat is that feeds are written in xml and it is
notoriously criminal to make humans edit plain xml.

For this reason a package is described in a raw utf-8 encoded text �le, the
package description �lewhich is converted by themod to an Atom package �le.

5



�e description �le can be seen as a simple tagged readme or changes �le.
Tags allow the speci�cation of versions, release notes, dependencies, rights,
authors, contributors, web pages for the package etc. �e mapping between
tags in description �les and Atom xml elements can be found in section 6.

�e following is an example of a minimal description �le for a package
mypackage.example.org authored by nobody. �ere are two versions in
this package.

@id mypackage.example.org

@author nobody

@labels useless gpl

@version 2007-11-01

@labels zero

@content http://www.example.org/mypackage/zero.tbz

55e1beb09addacabfc35f1921913abb9

@version 2007-11-11

@labels 1.0 stable

@content http://www.example.org/mypackage/v1.0.tbz

10f8ac0cdfd3eca081771d960382eb71

A description �le can be converted to the actual package description format
by using the package command.

> mod package README > /var/www/example/mypackage.atom

�e following package is more complex. It mentions a project web page,
versions have release notes, contributors and dependencies.

@id otherpackage.example.org

@author nobody @email nobody@@example.org

@webpage http://example.org/otherpackage

@version 2007-11-02

@notes First public release.

@content http://www.example.org/other1.0.0.tbz

55e1beb09addacabfc35f1921913abb9

@version 2007-11-03

@labels 1.0.1

@notes Bugfix release. The package now depends on mypackage.

@contributor Mr. Bugfix @email bugfixer@@example.com

@dep

http://www.example.org/mypackage

mypackage.example.org

2007-11-11 10f8ac0cdfd3eca081771d960382eb71

@content http://www.example.org/other-2007-11-11.tbz

6



10f8ac0cdfd3eca081771d960382eb71

If you used the mod to develop your package, dependencies for the version
you are about to release can be output as @dep tags with mod dependencies

-pack.
�e version archive can be created manually or if you list its contents in

the �le mod/manifest— to be tracked by your revision control system— by
issuing the archive command. �is will write the archive content to a �le
and print back its cryptographic hash.

mod archive /var/www/example/other-2007-11-11.tbz

Digest:

10f8ac0cdfd3eca081771d960382eb71

�e archive should contain the appropriate tag �le and ocamlbuild plug-in
needed to build the package.

todo. More work is needed to streamline the package publication proce-
dure. E.g. a command line interactive mode to update the tagged readme
with a new version, automatically computing the version identi�er (via time),
dependencies (via mod/deps), version contents (via mod/manifest) and
publish both the new news feed and the new version content to a given
directory. In any case the readme can always be reedited by hand.

6 package file reference
In this section we describe how package description �les are mapped to an
Atom �le [1] representing a package �le.

�e essence of the mapping is that the atom:feed element represents the
package and each atom:entry a version of the package. Atom �les contain
all the semantic structure needed to describe release notes, authors, rights,
link to a site, labels, etc. �e only extensions that needed are to describe
dependencies in atom:link elements:

1. A new value for the rel attribute of atom:link, dependency.

2. �ree new atom:link attributes to identify versions, mod:pid, mod:vid,
mod:digest. Atom explicitly supports such extensions via xml name
spaces [2].

�e whole package �le is wrapped into an atom:feed element containing
the following elements.

• @id ID

Mandatory. �e package id.

<atom:id>id:ID</atom:id>

• @author NAME [@email EMAIL] [@uri URI]

Mandatory (at least one). �e person(s) currently responsible for the package.

7



<atom:author>

<atom:name>NAME</atom:name>

<atom:email>EMAIL</atom:email>

<atom:uri>URI</atom:uri>

</atom:author>

• @contributor NAME [@email EMAIL] [@uri URI]

Contributor(s) to package.

<atom:contributor>

<atom:name>NAME</atom:name>

<atom:email>EMAIL</atom:email>

<atom:uri>URI</atom:uri>

</atom:contributor>

• @labels ID*

Labels describing the package.

<atom:category term="ID"/>...

• @rights TEXT

Copyright information for the package (not the license itself, the license
should be in the version’s archive).

<atom:rights>TEXT</atom:rights>

• @webpage URI

Webpage for the package.

<atom:link href="URI" rel="related"/>

• @icon URI

Icon for the package.

<atom:icon>URI</atom:icon>

• @logo URI

Logo for the package.

<atom:logo>URI</atom:logo>

Following these elements theremay be a number of versions eachwrapped
into an atom:entry element and described with the following tags.

• @version yyyy-mm-dd [hh:mm:ss]

Mandatory. �e version id (and publication date of the package). No two
version ids should be identical in the same package.

<atom:id>id:yyyy-mm-ddThh::mm:ssZ</atom:id>

<atom:updated>yyyy-mm-ddThh::mm:ssZ</atom:updated>

• @labels ID*

@author NAME [@email EMAIL] [@uri URI]

@contributor NAME [@email EMAIL] [@uri URI]

Respectively the version’s labels, authors (if di�erent from the package) and
contributors. Mapping is the same as given above for packages.

8



• @notes TEXT

�e version’s release notes.

<atom:content type="text">TEXT</atom:content>

• @content URI HASH

�e link to the archive and its hash.

<atom:link href="URI" rel="enclosure" mod:digest="HASH"/>

• @dep URI PID VID HASH

Dependencies of the package.

<atom:link href="URI" rel="dependency"

mod:pid="PID" mod:vid="VID" mod:digest="HASH"/>

7 todo
• Package description �les. Allow the speci�cation of relative links and alternate
download locations.

• Con�ict management. Need a way to locally override a dependency in case
two packages depend on two di�erent version of the same package.

• Need a way to integrate documentation. So that you can easily get to the
ocamldoc documentation of your packages.

• Any textual information is utf-8 encoded. Package ids and �le names should
be restricted to ascii letters only for �le system compatibility.

• Use atom:right ? Or prefer a license �le in the package ? At least labels
should give a hint of the license.
See also http://www.rfc-editor.org/rfc/rfc4946.txt.

• Resource consumption. On unices per user .mod cache with hard links.

bibliography
[1] M.Notthingham, R. Sayre.�e Atom Syndication Format. rfc 4287, 2005.

http://tools.ietf.org/html/rfc4287

[2] Tim Bray et al. Namespaces in xml 1.0 (2nd edition). w3c recommanda-
tion, 2006.
http://www.w3.org/TR/REC-xml-names/

9

http://www.rfc-editor.org/rfc/rfc4946.txt
http://tools.ietf.org/html/rfc4287
http://www.w3.org/TR/REC-xml-names/

	Introduction
	Assumptions
	Concepts
	The mod for package users
	The mod for package publishers
	Package file reference
	Todo
	Bibliography

