
WARNING, REJECTED by the JFP but may still be useful, 16 pages, 2024. © Daniel C. Bünzli 2024 1
doi:xx.xxxx/xxxxx Document style kept for now, because layout was tailored for it. revision 1

F U N C T I O N A L P E A R L

An alphabet for your data soups
DANIEL C. BÜNZLI ∗

Institute of Philosophy, University of Bern, Switzerland
(e-mail: daniel.buenzli@erratique.ch)

Abstract

Dealing with ubiquitous but poorly typed and structured data models like json in ml languages is
unpleasant. But it doesn’t have to be. We show how to define a generalized algebraic datatype whose
values denote bidirectional maps between subsets of values of a data model and the ml values of your
choice. With suitable combinators these maps are quick and pleasant to define in a declarative style.
The result can be used by generic functions that decode, encode, query and update data soups with
nicely typed values.

1 Introduction

Processing generic data models like json in ml languages is unpleasant. ml values can
be converted to these data models with pickler combinators (Kennedy, 2004) or datatype-
generic programming techniques (Gibbons, 2007). However, partially or fully modelling
their data schemas remains cumbersome. Using a generic type for the data model works
well in dynamically typed languages because it directly maps on their own type systems.
But in ml this representation is unnatural and frustrating to use.

Instead, we show how to define a generalized algebraic datatype whose values denote
bidirectional maps between subsets of values of the data model and the ml values you
want to use. With appropriate combinators to construct them, these descriptions can be
made quick to define in the decoding and encoding direction possibly eliding one if not
immediately useful. The values of this datatype can be used by generic functions that:

• Directly decode or encode the data model to the ml values of your choice without
constructing values of a generic representation of the data model.1

• Query and update data of partially modelled data schemas with arbitrary ml values.
• Automatically construct them from other datatype-generic representations you may

already have defined for your ml types.

∗ Funded by the Swiss National Science Foundation (grant pp00p1_211010, The Epistemology of Climate Change
–– Understanding the Climate Challenge) and a grant from the OCaml Software Foundation.

1 For json, since the shape of an object may depend on one of its members and that members are unordered,
some form of generic buffering may be needed to decode certain data schemas.

https://ocaml-sf.org/

2 An alphabet for your data soups

Like pickler combinators (Kennedy, 2004), the definition of these values can be made
pleasantly declarative. The decoding and encoding bureaucracy is left to the generic func-
tions that interpret the datatype. One way of understanding the datatype is to devise pickler
combinators for the data model –– rather than for the values of the ml language – but leave
out the specific value coding machinery open for interpretation. Another way is to see it as
a tagged final coding of the data model. Concretely the datatype allows to interpose your
own functions at each data model value decoding and encoding step. These functions can
be lossy or creative which naturally leads to data queries and data updates.

In what follows we focus on presenting the datatype. Providing an ergonomic set of
combinators to construct its values is important but less difficult. Definitions are kept as
simple as possible to expose the essence of this finally tagged representation. A practical
implementation2 should enrich these definitions with documentation strings for data schema
documentation generation, text locations for human friendly error reporting and text layout
information for layout preserving updates.

We use ocaml (Leroy et al., 2023) for the ml language and json (Bray, 2017) for the
data model, but as we conclude in Section 6 with the recipe, this technique is independent
of them. For conciseness we use exceptions to represent partial functions but signatures
can be changed to use explicit result or either return types where needed. No effects are
needed from the ml language.

2 A generic representation

First we define the type Json.t, a generic representation for json values in ml. In essence
nothing more than an abstract syntax tree for json text with one case for each sort of value.

module Json = struct

type t =

| Null of unit | Bool of bool | Number of float | String of string

| Array of t list | Obj of obj and obj = mem list and mem = string * t

end

As can be seen later, the type Json.t remains useful. However it is the type that is
unacceptable to work with in ml. Given a fixed data schema to process we do not want to
manipulate this soup of values:

• We want objects to be represented by proper record or variant types. Not by Json.obj

association lists that must be dynamically name checked for expectations.
• We want to get typed values on array element and object member access. Not generic
Json.t values that must be dynamically type checked for expectations.

3 A typed representation to interpret

To replace these generic values by the ml values we want, we introduce the type 'a jsont

whose values denote subsets of json values and their bidirectional map to ml values of
type 'a.
2 One can be found at https://erratique.ch/software/jsont

https://erratique.ch/software/jsont

3

We call these values “json types”. They belong to the following generalized algebraic
datatype whose cases and elided definitions are detailed in subsequent sections. The Rec

case is bureaucracy the laziest readers do not need to care about, it types recursives json
values if your ml is strict.

type ('a, 'b) base_map = . . .

type ('a, 'elt, 'builder) array_map = . . .

and ('o, 'dec) obj_map = . . .

and 'a any_map = . . .

and ('a, 'b) map = . . .

and _ jsont =

| Null : (unit, 'b) base_map -> 'b jsont

| Bool : (bool, 'b) base_map -> 'b jsont

| Number : (float, 'b) base_map -> 'b jsont

| String : (string, 'b) base_map -> 'b jsont

| Array : ('a, 'elt, 'builder) array_map -> 'a jsont

| Obj : ('o, 'o) obj_map -> 'o jsont

| Any : 'a any_map -> 'a jsont

| Map : ('a, 'b) map -> 'b jsont

| Rec : 'a jsont Lazy.t -> 'a jsont

Except for Any, Map and Rec, the cases of the type 'a jsont are in direct correspondence
with those of Json.t. But rather than storing data in the cases we have functions to
bidirectionally map them to values of a type 'a. The 'a jsont values are used alongside
decoding and encoding processes to directly check and transform the shape of the data.

For instance we can implement (see Appendix and Section 4) these two functions which
decode and encode generic Json.t values with ml values:

val decode : 'a jsont -> Json.t -> 'a

val encode : 'a jsont -> 'a -> Json.t

Representing json data with ml values becomes a matter of defining suitable 'a jsont

values. For example this kind of json object for messages:

{ "content": "J'aime pas la soupe", "public": true }

can be represented in ml by a record with two fields. Using the record’s natural constructor
and field accessors, combinators whose implementation is given in Section 3.5.3, and
ocaml’s reverse function application operator |>, this kind of object is described by:

module Message = struct

type t = { content : string; public : bool }

let make content public = { content; public }

let content msg = msg.content

let public msg = msg.public

let jsont : t jsont =

obj_map make

|> obj_mem "content" string ~enc:content

|> obj_mem "public" bool ~enc:public

|> obj_finish

end

4 An alphabet for your data soups

3.1 Base cases

Every base case carries a value of type base_map:

type ('a, 'b) base_map =

{ dec : 'a -> 'b;

enc : 'b -> 'a; }

Values of this type describe bidirectional maps from values of type 'a to 'b. They are used
to transform the canonical ml type 'a chosen for a json base type to the one we want to
use. The base cases are as follows:

• Null m maps json nulls to type 'a by mapping unit values with m.
• Bool m maps json booleans to type 'a by mapping bool values with m.
• Number m maps json numbers or nulls3 to type 'a by mapping float values with m.
• String m maps unescaped json strings to type 'a by mapping string values with m.

Most of the time the map m used with base cases is the identity map. But having
maps on base types is part of the strategy to interpose functions in every coding context.
This is particulary useful for json strings which are json’s universal type: all sorts of
enumerations, better represented by variants in ml, can be found in them. More amusing,
to reliably interchange 64-bit integers with json you need to encode them in strings.4

3.2 Map case

The elided type map used by Map is:

and ('a, 'b) map =

{ dom : 'a jsont;

map : ('a, 'b) base_map; }

A Map m value changes the ml type of the json type m.dom from 'a to 'b. It is a tool for
composing jsont values. If the reader wonders whether it is not simpler to expose a base
case like String m by the value {dom = String; map = m}, the answer is rather negative.
It is not directly evident in our simpler exposition but having maps in base cases provides
the proper coding context for erroring or text layout preserving. This context may be more
difficult to recover or no longer be available to generic functions when they get to process
the Map case which is not syntactically related to json text.

3 The semantics of json numbers is left to be desired. Interoperable json implementations map json numbers
to ieee 754 binary64 values. But they are not such values: nan and infinities cannot be represented. As of
writing, the most widely deployed and formally defined json encoder, namely ecmascript’s JSON.stringify

(Guo, 2023), lossily encodes any non-finite floating point value by null.
4 Again, interoperable json implementations map json numbers to ieee 754 binary64 values. Hence the only

integers that can be interchanged safely without precision loss are those in the range [−253; 253].

5

3.3 Array case

The elided type array_map used by Array is:

and ('array, 'elt, 'builder) array_map =

{ elt : 'elt jsont;

dec_empty : 'builder;

dec_skip : 'builder -> int -> bool;

dec_add : 'builder -> int -> 'elt -> 'builder;

dec_finish : 'builder -> 'array;

enc : 'acc. ('acc -> 'elt -> 'acc) -> 'acc -> 'array -> 'acc; }

An Array m value maps json arrays of uniform json type m.elt to values of type 'array

built using values of type 'builder. The record m explains how to construct and deconstruct
an 'array value. For decoding, we start with the value m.dec_empty, the element in the
json array at index i is added with m.dec_add, unless m.dec_skip is true on i (the purpose
of dec_skip will become clear later), and the final array is returned by m.dec_finish. For
encoding, the m.enc function folds over the elements of an 'array value to encode them to
the json array.

3.4 Any case

The elided type any_map used by Any is:

and 'a any_map =

{ dec_null : 'a jsont option;

dec_bool : 'a jsont option;

dec_number : 'a jsont option;

dec_string : 'a jsont option;

dec_array : 'a jsont option;

dec_obj : 'a jsont option;

enc : 'a -> 'a jsont; }

An Any m value maps sets of json values with multiple sorts to values of type 'a. It embeds
dynamic typing in our datatype. It also allows to decode and encode with different sorts
of json values. For decoding a json value of sort t, a generic function uses the json type
m.dec_t or errors if None. For encoding, the m.enc function returns the json type to use
with the value.

Given a json type value t the following option combinator uses Any to make it nullable
in json. The result of option t is a json type that maps json null values to None and
otherwise maps json values as t does but with successful results wrapped by Some.

let option : 'a jsont -> 'a option jsont = fun t ->

let none = Null { dec = Fun.const None; enc = Fun.const () } in

let some = Map { dom = t; map = {dec = Option.some; enc = Option.get}}in

let enc = function None -> none | Some _ -> some in

let none = Some none and some = Some some in

Any { dec_null = none; dec_bool = some; dec_number = some;

dec_string = some; dec_array = some; dec_obj = some; enc; }

6 An alphabet for your data soups

The Any case also allows to devise the json type json which maps any json value to its
generic representation:

let json : Json.t jsont = . . .

Its definition is left as an exercice for the reader but this value is a must for partial data
schema modelling.

3.5 Obj case

Mapping objects is more involved and the design is less self-evident. Challenges are that
members in json objects are unordered, that the shape of an object may depend on the
value of one if its members5 and that duplicate member names is undefined behaviour.6

This means that we cannot rely on a fixed member ordering to construct the ml value of an
object and worse, that we may have to wait for its last member to type check it.

To narrow the design space, we focus on a few patterns found in json data schemas that
we want to support without fuss while retaining efficient decodes for object shapes that are
known beforehand. These patterns are:

1. Objects as records. Member names and their types are known beforehand. Members
are required or optional in which case they can have a default value.

2. Objects as uniform key-value maps. Member names of the object are unknown but
their values are all of the same type. This must compose with pattern 1. as with the
json type json (Section 3.4) it enables partial object modelling and supports data
schemas that allow foreign members in their objects.

3. Objects as sums. There is a distinguished case member, for example named "type",
"class" or "version", and its value further determines an object shape described
using pattern 1., 2. or 3.

Finally we want json object maps to be defined through functions that are already naturally
provided for our ml types: constructors and accessors.

If the shape of an object cannot be captured by these patterns, it is always possible to
map it to a uniform Json.t key-value map using pattern 2. followed by a Map to sort things
out. This provides an ultimate escape hatch at the cost of unconditionnaly going through
the generic representation.

3.5.1 (De)constructing arbitrary ml values for json objects

We want to represent json objects by arbitrary ml values of type 'o which hold member
values with their own distinct types 'a1, 'a2, etc.

For encoding this is easily tackled by having one projection function of type 'o -> 'a𝑖
for each object member. For decoding we need to provide a constructor function with one
argument per member value that returns a value of type 'o. To manipulate this constructor
we use a datatype morally equivalent to this representation of a function application:

5 This is not a built-in mechanism of the data model but out-of-band constraints mandated by data schemas.
6 But ecmascript’s formally defined decoder JSON.parse (Guo, 2023) mandates “last one takes over.”

7

type ('ret, 'f) app =

| Fun : 'f -> ('ret, 'f) app

| App : ('ret, 'a -> 'b) app * 'a -> ('ret, 'b) app

In a value of type app we can lift an arbitrary function f returning 'ret with the Fun case
and instrument each argument application with App cases until f is fully “applied” to a value
of type ('ret, 'ret) app. We store object constructors in a similar data type but since we
do not have the argument values yet we use a type witness7 to serve as a placeholder for
the member value:

type ('ret, 'f) dec_fun =

| Dec_fun : 'f -> ('ret, 'f) dec_fun

| Dec_app : ('ret, 'a -> 'b) dec_fun * 'a Type.Id.t -> ('ret, 'b) dec_fun

This allows to decode unordered and individually typed member values as they come, store
them by type witness in an heterogeneous dictionary Dict.t (see implementation in the
Appendix) and, once we have collected all member values in the dictionary, we can invoke
the constructor to get the ml value for the object with this function:

let rec apply_dict : type ret f. (ret, f) dec_fun -> Dict.t -> f =

fun dec dict -> match dec with

| Dec_fun f -> f

| Dec_app (f,arg) -> (apply_dict f dict) (Option.get (Dict.find arg dict))

For fully known object shapes this mechanism allows decoders to directly decode objects
and their unordered member values to the representations we want to use in ml.

3.5.2 Object maps

The elided type obj_map used by Obj is:

and ('o, 'dec) obj_map =

{ dec : ('o, 'dec) dec_fun;

mem_decs : mem_dec String_map.t;

mem_encs : 'o mem_enc list;

shape : 'o obj_shape; }

An Obj m value maps a json object to a value of type 'o. The m.dec field holds the
constructor function for 'o values. The Obj case in the definition of jsont (Section 3)
constrains the 'dec parameter to be equal to 'o which ensures that the contructor is fully
“applied”. Remaining fields of the record are described in subsequent sections.

3.5.3 Member maps

The m.mem_decs and m.mem_encs fields of obj_map describe members of the object that
are known beforehand. Both fields hold the same values of type mem_map but they are sorted
differently and their type parameters are hidden in slighly different ways to accomodate
decoding and encoding processes. These types are defined by:

7 Available in the ocaml standard library in Type.Id since ocaml 5.1

8 An alphabet for your data soups

and mem_dec = Mem_dec : ('o, 'a) mem_map -> mem_dec

and 'o mem_enc = Mem_enc : ('o, 'a) mem_map -> 'o mem_enc

and ('o, 'a) mem_map =

{ name : string;

type’ : 'a jsont;

id : 'a Type.Id.t;

dec_absent : 'a option;

enc : 'o -> 'a;

enc_omit : 'a -> bool; }

A value mm of type mem_map maps a member 'a of a json object mapped to 'o. mm.name
is the member name. mm.type’ is the json type of its value. mm.id is the type witness to
represent the member value in the constructor of 'o. mm.dec_absent is a value to use if
the member is absent on decodes; None means error on absence. mm.enc is the function to
get back the member value from 'o for encoding. mm.enc_omit is a predicate on the value
returned by mm.enc to decide whether it should be omitted on encoding; usually this tests
for equality with the value mentioned in mm.dec_absent.

A member map mm needs to be added to an object map m in m.mem_decs, m.mem_encs
and the mm.id type witness must be applied to the object constructor in m.dec. This is the
duty of combinators. For example this one describes a required member and adds it to an
object map:

let obj_mem :

string -> 'a jsont -> enc:('o -> 'a) ->

('o, 'a -> 'b) obj_map -> ('o, 'b) obj_map

=

fun name type’ ~enc obj_map ->

let id = Type.Id.make () in

let dec_absent = None and enc_omit = Fun.const false in

let mm = { name; type’; id; dec_absent; enc; enc_omit } in

let dec = Dec_app (obj_map.dec, mm.id) in

let mem_decs = String_map.add mm.name (Mem_dec mm) obj_map.mem_decs in

let mem_encs = Mem_enc mm :: obj_map.mem_encs in

{ obj_map with dec; mem_decs; mem_encs; }

At this point we can provide the full implementations of the combinators used in the
message object modelling example given in Section 3.

let bool = Bool { dec = Fun.id; enc = Fun.id }

let string = String { dec = Fun.id; enc = Fun.id }

let obj_finish o = Obj { o with mem_encs = List.rev o.mem_encs }

let obj_map : 'dec -> ('o, 'dec) obj_map = fun make ->

let dec = Dec_fun make and shape = Obj_basic Unknown_skip in

{ dec; mem_decs = String_map.empty; mem_encs = []; shape }

9

3.5.4 Object shapes

The last field of the obj_map type to describe is the shape field of type obj_shape:

and 'o obj_shape =

| Obj_basic : ('o, 'mems, 'builder) unknown_mems -> 'o obj_shape

| Obj_cases : ('o, 'cases, 'tag) obj_cases -> 'o obj_shape

This value indicates whether the members described in the object map are the final word
on the shape of the object:

• Obj_basic u indicates that the object’s members are fully known and the way to
handle unknown member is described by u, see Section 3.5.5.

• Obj_cases cases indicates that there is a case member described in cases. Each
case member value gives another obj_map value which further describe the object,
see Section 3.5.6.

The obj_shape type definition turns object map values into a decision tree with Obj_cases

nodes, branches labelled by case member values and with Obj_basic leaves. Each path
in this tree describes a complete object whose members depend on case member values
found in the data. We assume that the combinators constructing these values enforce the
constraint that no member is defined twice in a path from the root to a leaf.

Note that once you get an Obj_basic shape, all data dependent shapes have been
determined and members can be directly decoded to their type without buffering them.

3.5.5 Unknown members

The type unknown_mems used by Obj_basic shapes is:

and ('o, 'mems, 'builder) unknown_mems =

| Unknown_skip : ('o, unit, unit) unknown_mems

| Unknown_error : ('o, unit, unit) unknown_mems

| Unknown_keep :

('mems, 'a, 'builder) mems_map * ('o -> 'mems) ->

('o, 'mems) unknown_mems

A value u of type unknown_mems maps to 'mems the unknown members of a json object
mapped to 'o. It respectively indicates to skip, error, or keep them. In the latter case
the Unknown_keep (m, enc) value describes with enc how to get them back from 'o for
encoding and with m, how to map them to a value of type 'mems. The values enc and m are
kept separate because the type 'o is bespoke while unknown member maps can be reused
across object maps. The value m is of this type:

and ('mems, 'a, 'builder) mems_map =

{ mems_type : 'a jsont;

id : 'mems Type.Id.t;

dec_empty : 'builder;

dec_add : string -> 'a -> 'builder -> 'builder;

dec_finish : 'builder -> 'mems

enc : 'acc. (string -> 'a -> 'acc -> 'acc) -> 'mems -> 'acc -> 'acc }

10 An alphabet for your data soups

This record maps unknown members of uniform json type m.mems_type to a value of
type 'mems built using values of types 'builder. Use the json type json (Section 3.4) in
m.mems_type for partial object modelling or objects that need to preserve foreign members.
m.id is the type witness to represent the 'mems value in the object constructor. For decoding,
we start with the value m.dec_empty, unknown members are added with m.dec_add and
the final 'mems value is returned by m.dec_finish. For encoding m.enc allows to recover
from 'mems the unknown members to encode them in the json object.

3.5.6 Object cases

Type type obj_cases used by Obj_cases shapes is:

and ('o, 'cases, 'tag) obj_cases =

{ tag : ('o, 'tag) mem_map; (* 'o is irrelevant, 'tag is not stored *)

tag_compare : 'tag -> 'tag -> int;

id : 'cases Type.Id.t;

cases : ('cases, 'tag) case list;

enc : 'o -> 'cases;

enc_case : 'cases -> ('cases, 'tag) case_value; }

A value m of type obj_cases maps to 'cases the object cases of an object mapped to 'o.
Cases are selected by the value of a case member of type 'tag described in m.tag. Tag
values are not stored in 'o (the decoded case value is) so the 'o parameter, m.tag.id and
m.tag.enc are unused here. m.tag_compare allows to compare case tags. m.id is the type
witness to represent the cases in the constructor of 'o. m.cases is the list of cases. This is
not a function on 'tag values in order to make the description enumerable (e.g. for schema
documentation generation). The type case hides the 'case parameter of the type case_map
which describes cases:

and ('cases, 'tag) case =

| Case : ('cases, 'case, 'tag) case_map -> ('cases, 'tag) case

and ('cases, 'case, 'tag) case_map =

{ tag : 'tag;

obj_map : ('case, 'case) obj_map;

dec : 'case -> 'cases; }

A value cm of type case_map describes a case of type 'case part of the type 'cases. cm.tag
is the tag value that identifies the case in the data. cm.obj_map describes the additional
shape this case gives to the object. cm.dec injects the decoded case into the type that gathers
them.

For encoding cases, the m.enc function of obj_cases gets back the case from 'o. To find
out how to encode it, the function m.enc_case is used. It returns a value of type case_value
which has a the actual case value and its map for encoding:

and ('cases, 'tag) case_value =

| Case_value :

('cases, 'case, 'tag) case_map * 'case -> ('cases, 'tag) case_value

11

The m.enc_case function is the only ad-hoc function that needs to be devised specifically
for jsont values. All the other functions to describe objects are natural constructors and
accessors of ml types.

The design for object cases allows to map them to a record type which has common fields
for all cases and a field for the cases:

type type’ = C1 of C1.t | C2 of C2.t . . .

type t =

{ . . . (* Fields common to all cases *); type’: type’;}

but they can also be described individually and mapped to a “toplevel” variant type if
'cases coincides with 'o:

type t = C1 of C1.t | C2 of C2.t . . .

4 Decode and encode

Given a jsont value we can decode and encode json with ml values without constructing
generic Json.t values; except transiently for decoding object instances with data dependent
shapes and poorly ordered members. Implementing a json codec is beyond the scope of this
paper but the Appendix has implementations for decode and encode functions that convert
ml values with generic Json.t values.

For decode we took care not to assume full in-memory access to an object’s members. It
thus shows how a decoder can proceed to provide best-effort on-the-fly decoding. Except for
case members, the last occurence of duplicate members takes over, however all definitions
must type as defined by the object map otherwise the decode errors. These limitations on
duplicate members could be lifted with a more complex decoder but it may not be worth
the trouble. The case for objects is more intricate than we would like it to be, but we blame
json’s loose specification for that.

Otherwise the implementation of these functions mostly consists in recursing on the
jsont values to boringly invoke the menagerie of functions that are packed therein.

5 Query and update

Since we can now interpose our functions in every coding context we get a very flexible
data processing system. A type for data queries and a function to execute them can be as
simple as:

type 'a query = 'a jsont

let query : 'a query -> Json.t -> 'a = decode

In this view, queries are just transforming decodes. Their encoding direction can be made
to fail or defined with anything that feels sensitive to encode the query result to.

To navigate the structure of json values to apply a query on a subtree, the following
composable indexing combinators can be used:

let get_mem : string -> 'a query -> 'a query = fun name q ->

obj_map Fun.id |> obj_mem name q ~enc:Fun.id |> obj_finish

12 An alphabet for your data soups

let get_nth : int -> 'a query -> 'a query = fun nth q ->

let dec_empty = None and dec_add _ _ v = Some v in

let dec_skip _ k = nth <> k in

let dec_finish = function None -> failwith "too short" | Some v -> v in

let enc f acc v = f acc v (* Singleton array with the query result *) in

Array { elt = q; dec_empty; dec_add; dec_skip; dec_finish; enc }

The get_nth combinator explains the presence of dec_skip in the array_map type
(Section 3.3). The query q only needs to succeed on the nth element. Without dec_skip we
would apply it on every element of the array which is undesirable. The dec_skip field is the
only bit in the design that was specifically added to support queries. For objects, skipping
unknown members is quite natural to have in order to support data schema evolution.

Typed updates of json data is easy to specify as Json.t returning json types. Decoders
invoking such queries return updated json as Json.t values. Here is a kernel of composable
combinators to peform updates:

val update_mem : string -> 'a jsont -> Json.t jsont

val update_nth : int -> 'a jsont -> Json.t jsont

val delete_mem : string -> Json.t jsont

val delete_nth : int -> Json.t jsont

val const : 'a jsont -> 'a -> 'a jsont

The update_mem and update_nth combinators apply on the member or index value the
decoder of the given json type and replace it with the encoding of the result. Chaining
update combinators allows to navigate arbitrarily nested json to apply an update. All these
combinators are simple Map over the json type json (Section 3.4) with suitable uses of
encode and decode. The implementations of update_mem, delete_mem and const are:

let update_mem : string -> 'a jsont -> Json.t jsont = fun name q ->

let dec = function

| Json.Obj ms ->

let update (n, v as m) =

if n = name then (n, encode q (decode q v)) else m

in

Json.Obj (List.map update ms)

| _ -> failwith "type error"

in

Map { dom = json; map = { dec; enc = Fun.id } }

let delete_mem : string -> Json.t jsont = fun name ->

let dec = function

| Json.Obj ms -> Json.Obj (List.filter (fun (n, _) -> n <> name) ms)

| _ -> type_error ()

in

Map { dom = json; map = { dec; enc = Fun.id } }

let const : 'a jsont -> 'a -> 'a jsont = fun t v ->

let dec _ = v and enc _ = encode t v in

Map { dom = json; map = { dec; enc } }

13

6 The recipe

None of what was presented here is specific to the json data model. A datatype similar to
jsont (Section 3) can be devised for any data model. The recipe is as follows.

• A base case is needed for every base type of the model. Having maps in these cases
allows to accurately represent their coding contexts. (Section 3.1)

• An Array-like case is needed for mapping the model’s type for arrays. (Section 3.3)
• An Obj-like case is needed for mapping the model’s type for key-value maps or

records. The ml ingredients here are: projection functions for encoding and, for
decoding, a constructor function instrumented by a datatype representing function
applications using type witnesses to indirectly refer to argument values. (Section 3.5)

• An Any-like case is needed if the model is dynamically typed. It is used to map
implicit sums of the model’s types to a uniform ml type. (Section 3.4)

• The Map case is needed for composing map values. (Section 3.2)
• The Rec case is needed in a strict ml for representing recursive values of the data

model. (Section 3)

And with this we hope to have made your future data soups more edible in ml.

References

Bray, T., Ed. (2017) The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259.
https://doi.org/10.17487/RFC8259

Guo, S., Ficarra M., Gibbons, K., Eds (2023) ECMAScript® 2023 Language Specification. ECMA-
262. https://262.ecma-international.org/14.0/

Gibbons, J. (2007) Datatype-Generic Programming. Lecture Notes in Computer Science. vol 4719.
https://doi.org/10.1007/978-3-540-76786-2_1

Kennedy, A. J., (2004) Pickler combinators. Journal of Functional Programming. 14(6), 727-739.
https://doi.org/10.1017/S0956796804005209

Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Sivaramakrishnan, KC, & Vouillon, J. (2023)
The OCaml system release 5.1. Documentation and user’s manual.https://ocaml.org/manual

Appendix

ocaml 5.1 implementation of the decode and encode functions mentioned in Section 4.

module String_map = Map.Make (String)

(* Errors *)

let type_error () = failwith "type error"
let unexpected_member n = failwith ("Unexpected member " ^ n)
let missing_member n = failwith ("Missing member " ^ n)
let unknown_case_tag () = failwith "Unknown case tag"

https://doi.org/10.17487/RFC8259
https://262.ecma-international.org/14.0/
https://doi.org/10.1007/978-3-540-76786-2_1
https://doi.org/10.1017/S0956796804005209
https://ocaml.org/manual

14 An alphabet for your data soups

(* Heterogeneous key-value maps *)

module Dict = struct
module M = Map.Make (Int)
type binding = B : 'a Type.Id.t * 'a -> binding
type t = binding M.t
let empty = M.empty
let add k v m = M.add (Type.Id.uid k) (B (k, v)) m
let find : type a. a Type.Id.t -> t -> a option =
fun k m -> match M.find_opt (Type.Id.uid k) m with
| None -> None
| Some B (k', v) ->

match Type.Id.provably_equal k k' with
| Some Type.Equal -> Some v | None -> assert false

end

(* Decode *)

let rec decode : type a. a jsont -> Json.t -> a =
fun t j -> match t with
| Null map -> (match j with Json.Null v -> map.dec v | _ -> type_error ())
| Bool map -> (match j with Json.Bool b -> map.dec b | _ -> type_error ())
| Number map ->

(match j with
| Json.Number n -> map.dec n | Json.Null _ -> map.dec Float.nan
| _ -> type_error ())

| String map -> (match j with Json.String s -> map.dec s | _ -> type_error ())
| Array map ->

(match j with Json.Array vs -> decode_array map vs | j -> type_error ())
| Obj map ->

(match j with Json.Obj mems -> decode_obj map mems | j -> type_error ())
| Map map -> map.map.dec (decode map.dom j)
| Any map -> decode_any t map j
| Rec t -> decode (Lazy.force t) j

and decode_array : type a e b. (a, e, b) array_map -> Json.t list -> a =
fun map vs ->
let add (i, a) v =
i + 1, (if map.dec_skip a i then a else map.dec_add a i (decode map.elt v))

in
map.dec_finish (snd (List.fold_left add (0, map.dec_empty) vs))

and decode_obj : type o. (o, o) obj_map -> Json.obj -> o =
fun map mems ->
apply_dict map.dec @@
decode_obj_map map String_map.empty String_map.empty Dict.empty mems

and decode_obj_map : type o.
(o, o) obj_map -> mem_dec String_map.t -> mem_dec String_map.t -> Dict.t ->
Json.obj -> Dict.t

=
fun map mem_miss mem_decs dict mems ->
let u n _ _ = invalid_arg (n ^ "member defined twice") in
let mem_miss = String_map.union u mem_miss map.mem_decs in
let mem_decs = String_map.union u mem_decs map.mem_decs in
match map.shape with
| Obj_cases cases -> decode_obj_case cases mem_miss mem_decs dict [] mems
| Obj_basic u ->

match u with

15

| Unknown_skip -> decode_obj_basic u () mem_miss mem_decs dict mems
| Unknown_error -> decode_obj_basic u () mem_miss mem_decs dict mems
| Unknown_keep (map, _) ->

decode_obj_basic u map.dec_empty mem_miss mem_decs dict mems

and decode_obj_basic : type o map builder.
(o, map, builder) unknown_mems -> builder -> mem_dec String_map.t ->
mem_dec String_map.t -> Dict.t -> Json.obj -> Dict.t

=
fun u umap mem_miss mem_decs dict -> function
| [] ->

let dict = match u with
| Unknown_skip | Unknown_error -> dict
| Unknown_keep (map, _) -> Dict.add map.id (map.dec_finish umap) dict
in
let add_default _ (Mem_dec m) dict = match m.dec_absent with
| Some v -> Dict.add m.id v dict | None -> missing_member m.name
in
String_map.fold add_default mem_miss dict

| (n, v) :: mems ->
match String_map.find_opt n mem_decs with
| Some (Mem_dec m) ->

let dict = Dict.add m.id (decode m.type’ v) dict in
let mem_miss = String_map.remove n mem_miss in
decode_obj_basic u umap mem_miss mem_decs dict mems

| None ->
match u with
| Unknown_skip -> decode_obj_basic u umap mem_miss mem_decs dict mems
| Unknown_error -> unexpected_member n
| Unknown_keep (map, _) ->

let umap = map.dec_add n (decode map.mems_type v) umap in
decode_obj_basic u umap mem_miss mem_decs dict mems

and decode_obj_case : type o cases tag.
(o, cases, tag) obj_cases -> mem_dec String_map.t -> mem_dec String_map.t ->
Dict.t -> Json.obj -> Json.obj -> Dict.t

=
fun cases mem_miss mem_decs dict delay mems ->
let decode_case_tag tag =
let eq_tag (Case c) = cases.tag_compare c.tag tag = 0 in
match List.find_opt eq_tag cases.cases with
| None -> unknown_case_tag ()
| Some (Case case) ->

let mems = List.rev_append delay mems in
let dict = decode_obj_map case.obj_map mem_miss mem_decs dict mems in
Dict.add cases.id (case.dec (apply_dict case.obj_map.dec dict)) dict

in
match mems with
| [] ->

(match cases.tag.dec_absent with
| Some t -> decode_case_tag t | None -> missing_member cases.tag.name)

| (n, v as mem) :: mems ->
if n = cases.tag.name then decode_case_tag (decode cases.tag.type’ v) else
match String_map.find_opt n mem_decs with
| None -> decode_obj_case cases mem_miss mem_decs dict (mem :: delay) mems
| Some (Mem_dec m) ->

let dict = Dict.add m.id (decode m.type’ v) dict in
let mem_miss = String_map.remove n mem_miss in
decode_obj_case cases mem_miss mem_decs dict delay mems

16 An alphabet for your data soups

and decode_any : type a. a jsont -> a any_map -> Json.t -> a =
fun t map j ->
let dec t m j = match m with Some t -> decode t j | None -> type_error () in
match j with
| Json.Null _ -> dec t map.dec_null j
| Json.Bool _ -> dec t map.dec_bool j
| Json.Number _ -> dec t map.dec_number j
| Json.String _ -> dec t map.dec_string j
| Json.Array _ -> dec t map.dec_array j
| Json.Obj _ -> dec t map.dec_obj j

(* Encode *)

let rec encode : type a. a jsont -> a -> Json.t =
fun t v -> match t with
| Null map -> Json.Null (map.enc v)
| Bool map -> Json.Bool (map.enc v)
| Number map -> Json.Number (map.enc v)
| String map -> Json.String (map.enc v)
| Array map ->

let encode_elt a elt = (encode map.elt elt) :: a in
Json.Array (List.rev (map.enc encode_elt [] v))

| Obj map -> Json.Obj (List.rev (encode_obj map v []))
| Any map -> encode (map.enc v) v
| Map map -> encode map.dom (map.map.enc v)
| Rec t -> encode (Lazy.force t) v

and encode_obj : type o. (o, o) obj_map -> o -> Json.obj -> Json.obj =
fun map o obj ->
let encode_mem obj (Mem_enc map) =
let v = map.enc o in
if map.enc_omit v then obj else (map.name, encode map.type’ v) :: obj

in
let obj = List.fold_left encode_mem obj map.mem_encs in
match map.shape with
| Obj_basic (Unknown_keep (map, enc)) ->

let encode_mem n v obj = (n, encode map.mems_type v) :: obj in
map.enc encode_mem (enc o) obj

| Obj_basic _ -> obj
| Obj_cases cases ->

let Case_value (case, c) = cases.enc_case (cases.enc o) in
let obj =
if cases.tag.enc_omit case.tag then obj else
(cases.tag.name, encode cases.tag.type’ case.tag) :: obj

in
encode_obj case.obj_map c obj

	Introduction
	A generic representation
	A typed representation to interpret
	Base cases
	Map case
	Array case
	Any case
	Obj case
	(De)constructing arbitrary ml values for json objects
	Object maps
	Member maps
	Object shapes
	Unknown members
	Object cases

	Decode and encode
	Query and update
	The recipe

