The library is unstable and the quick start remains todo, for now there are just a few examples and a generic function template for processing type gists.
TODO
Typegist.Fun.Generic.pp
or to specify the range of scalars (e.g. for random generation)TODO
Cmdliner
term)Typegist.Type.Gist.Sum.to_variant
).This example shows records and abstract type public representation versioning.
module Person : sig
type t
val v : string -> string -> string option -> t
val name : t -> string
val email : t -> string
val phone : t -> string option
val type_gist : t Type.Gist.t
val pp : Format.formatter -> t -> unit
end = struct
type t = { name : string; email : string; phone : string option }
let v name email phone = { name; email; phone }
let name p = p.name
let email p = p.email
let phone p = p.phone
let type_gist =
let name = Type.Gist.(field "name" string name) in
let email = Type.Gist.(field "email" string email) in
let phone = Type.Gist.(field "phone" (option string) phone) in
let repr_v0 = (* First version had no phone numbers *)
let to_v1 name email = { name; email; phone = None } in
let g = Type.Gist.(record "person" @@ ctor to_v1 * name * email) in
Type.Gist.Abstract.repr ~version:"v0" g Fun.id Fun.id
in
let repr_v1 = (* Added phone numbers *)
let g = Type.Gist.(record "person" @@ ctor v * name * email * phone) in
Type.Gist.Abstract.repr ~version:"v1" g Fun.id Fun.id
in
Type.Gist.abstract "person" ~reprs:[repr_v1; repr_v0]
let pp = Fun.Generic.pp type_gist
end
This example shows variants and recursive types via a simple binary tree.
module Btree : sig
type 'a t = Empty | Node of 'a t * 'a * 'a t
val type_gist : 'a Type.Gist.t -> 'a t Type.Gist.t
val pp : 'a Type.Gist.t -> Format.formatter -> 'a t -> unit
end = struct
type 'a t = Empty | Node of 'a t * 'a * 'a t
let type_gist gel =
let rec g = lazy begin
let g = Type.Gist.rec' g in
let empty_case = Type.Gist.(case "Empty" @@ ctor Empty) in
let node_ctor l v r = Node (l, v, r) in
let node_lproj = function Node (l, _, _) -> l | _ -> assert false in
let node_eproj = function Node (_, v, _) -> v | _ -> assert false in
let node_rproj = function Node (_, _, r) -> r | _ -> assert false in
let node_ldim = Type.Gist.(dim g node_lproj) in
let node_edim = Type.Gist.(dim gel node_eproj) in
let node_rdim = Type.Gist.(dim g node_rproj) in
let node_case =
Type.Gist.case "Node" @@
Type.Gist.(ctor node_ctor * node_ldim * node_edim * node_rdim)
in
let t_proj = function Empty -> empty_case | Node _ -> node_case in
Type.Gist.variant "Btree.t" t_proj [empty_case; node_case]
end
in
Lazy.force g
let pp elt = Fun.Generic.pp (type_gist elt)
end
Arbitrary mutual recursion is easily supported. Shown here between two types.
let module M = struct
type one = One | To_two of two
and two = Two | To_one of one
let type_gist_one, type_gist_two =
let rec gone = lazy begin
let gtwo = Type.Gist.rec' gtwo in
let one_case = Type.Gist.(case "One" @@ ctor One) in
let to_two_ctor t = To_two t in
let to_two_proj = function To_two v -> v | _ -> assert false in
let to_two_dim = Type.Gist.(dim gtwo to_two_proj) in
let to_two_prod = Type.Gist.(ctor to_two_ctor * to_two_dim) in
let to_two_case = Type.Gist.case "To_two" to_two_prod in
let one_proj = function One -> one_case | To_two _ -> to_two_case in
Type.Gist.variant "M.one" one_proj [one_case; to_two_case]
end
and gtwo = lazy begin
let gone = Type.Gist.rec' gone in
let two_case = Type.Gist.(case "Two" @@ ctor Two) in
let to_one_ctor t = To_one t in
let to_one_proj = function To_one v -> v | _ -> assert false in
let to_one_dim = Type.Gist.(dim gone to_one_proj) in
let to_one_prod = Type.Gist.(ctor to_one_ctor * to_one_dim) in
let to_one_case = Type.Gist.(case "To_one" @@ to_one_prod) in
let two_proj = function Two -> two_case | To_one _ -> to_one_case in
Type.Gist.variant "M.two" two_proj [two_case; to_one_case]
end
in
(Lazy.force gone), (Lazy.force gtwo)
end
For GADTs we need to cheat a little bit. When trying to describe it as a variant we can't type the case list since each case has another type witness. We can however define an existential for the GADT and describe it as if it was a regular variant.
module M = struct
type 'a t =
| Int : int t
| Float : float t
| Pair : 'a t * 'b t -> ('a * 'b) t
type e = E : 'a t -> e (* We need to hide the witness. *)
let type_gist : e Type.Gist.t =
let rec g = lazy begin
let g = Type.Gist.rec' g in
let int_case = Type.Gist.(case "Int" @@ ctor (E Int)) in
let float_case = Type.Gist.(case "Float" @@ ctor (E Float)) in
let pair_ctor (E a) (E b) = E (Pair (a, b)) in
let pair_lproj = function E Pair (a, _) -> E a | _ -> assert false in
let pair_rproj = function E Pair (_, b) -> E b | _ -> assert false in
let pair_ldim = Type.Gist.dim g pair_lproj in
let pair_rdim = Type.Gist.dim g pair_rproj in
let pair_prod = Type.Gist.(ctor pair_ctor * pair_ldim * pair_rdim) in
let pair_case = Type.Gist.case "Pair" pair_prod in
let t_proj : type a. e -> e Type.Gist.Variant.case = function
| E Int -> int_case | E Float -> float_case | E (Pair _) -> pair_case
in
let cases = [int_case; float_case; pair_case] in
Type.Gist.variant "_ M.t" t_proj cases
end
in
Lazy.force g
end
The following is a function template for processing two values by following their gists.
Since the types need to be spelled out because of the GADT it is usually a good idea to define a type for the function you are defining. That's the purpose of the 'a t
below which takes two values and returns unit
you likely want to adjust that.
Also the implementation of Typegist.Fun.Generic
functions can serve as simple examples.
module Generic_binary_fun = struct
type 'a t = 'a -> 'a -> unit
let rec fun_scalar : type a. a Type.Gist.scalar -> a t = fun s v0 v1 ->
failwith "TODO"
and fun_arraylike :
type elt arr. (elt, arr) Type.Gist.arraylike -> arr t = fun a v0 v1 ->
failwith "TODO"
and fun_maplike :
type k v m. (k, v, m) Type.Gist.maplike -> m t = fun m v0 v1 ->
failwith "TODO"
and fun_product : type p. p Type.Gist.product -> p t = fun p v0 v1 ->
failwith "TODO"
and fun_record : type r. r Type.Gist.record -> r t = fun r v0 v1 ->
failwith "TODO"
and fun_sum : type s. s Type.Gist.sum -> s t = fun s v0 v1 ->
failwith "TODO"
and fun_func :
type d r. (d, r) Type.Gist.func -> (d -> r) t = fun f v0 v1 ->
failwith "TODO"
and fun_abstract :
type a. a Type.Gist.abstract -> a t = fun a v0 v1 ->
failwith "TODO"
and fun_gist : type a. a Type.Gist.t -> a t = fun g v0 v1 -> match g with
| Scalar s -> fun_scalar s v0 v1
| Arraylike a -> fun_arraylike a v0 v1
| Maplike m -> fun_maplike m v0 v1
| Product p -> fun_product p v0 v1
| Record r -> fun_record r v0 v1
| Sum s -> fun_sum s v0 v1
| Func f -> fun_func f v0 v1
| Abstract a -> fun_abstract a v0 v1
| Lazy (_, g) -> fun_gist g (Lazy.force v0) (Lazy.force v1)
| Ref (_, g) -> fun_gist g !v0 !v1
| Rec g -> fun_gist (Lazy.force g) v0 v1
end