Typegist Quick start

The library is unstable and the quick start remains todo, for now there are just a few examples and a generic function template for processing type gists.

Describing your types

TODO

Processing the description

TODO

Examples

Records

This example shows records and abstract type public representation versioning.

module Person : sig
  type t
  val v : string -> string -> string option -> t
  val name : t -> string
  val email : t -> string
  val phone : t -> string option
  val type_gist : t Type.Gist.t
  val pp : Format.formatter -> t -> unit
end = struct
  type t = { name : string; email : string; phone : string option }
  let v name email phone = { name; email; phone }
  let name p = p.name
  let email p = p.email
  let phone p = p.phone
  let type_gist =
    let name = Type.Gist.(field "name" string name) in
    let email = Type.Gist.(field "email" string email) in
    let phone = Type.Gist.(field "phone" (option string) phone) in
    let repr_v0 = (* First version had no phone numbers *)
      let to_v1 name email = { name; email; phone = None } in
      let g = Type.Gist.(record "person" @@ ctor to_v1 * name * email) in
      Type.Gist.Abstract.repr ~version:"v0" g Fun.id Fun.id
    in
    let repr_v1 = (* Added phone numbers *)
      let g = Type.Gist.(record "person" @@ ctor v * name * email * phone) in
      Type.Gist.Abstract.repr ~version:"v1" g Fun.id Fun.id
    in
    Type.Gist.abstract "person" ~reprs:[repr_v1; repr_v0]

  let pp = Fun.Generic.pp type_gist
end

Variants and recursive types

This example shows variants and recursive types via a simple binary tree.

module Btree : sig
  type 'a t = Empty | Node of 'a t * 'a * 'a t
  val type_gist : 'a Type.Gist.t -> 'a t Type.Gist.t
  val pp : 'a Type.Gist.t -> Format.formatter -> 'a t -> unit
end = struct
  type 'a t = Empty | Node of 'a t * 'a * 'a t
  let type_gist gel =
    let rec g = lazy begin
      let g = Type.Gist.rec' g in
      let empty_case = Type.Gist.(case "Empty" @@ ctor Empty) in
      let node_ctor l v r = Node (l, v, r) in
      let node_lproj = function Node (l, _, _) -> l | _ -> assert false in
      let node_eproj = function Node (_, v, _) -> v | _ -> assert false in
      let node_rproj = function Node (_, _, r) -> r | _ -> assert false in
      let node_ldim = Type.Gist.(dim g node_lproj) in
      let node_edim = Type.Gist.(dim gel node_eproj) in
      let node_rdim = Type.Gist.(dim g node_rproj) in
      let node_case =
        Type.Gist.case "Node" @@
        Type.Gist.(ctor node_ctor * node_ldim * node_edim * node_rdim)
      in
      let t_proj = function Empty -> empty_case | Node _ -> node_case in
      Type.Gist.variant "Btree.t" t_proj [empty_case; node_case]
    end
    in
    Lazy.force g

  let pp elt = Fun.Generic.pp (type_gist elt)
end

Mutual recursion

Arbitrary mutual recursion is easily supported. Shown here between two types.

let module M = struct
  type one = One | To_two of two
  and two = Two | To_one of one

  let type_gist_one, type_gist_two =
    let rec gone = lazy begin
      let gtwo = Type.Gist.rec' gtwo in
      let one_case = Type.Gist.(case "One" @@ ctor One) in
      let to_two_ctor t = To_two t in
      let to_two_proj = function To_two v -> v | _ -> assert false in
      let to_two_dim = Type.Gist.(dim gtwo to_two_proj) in
      let to_two_prod = Type.Gist.(ctor to_two_ctor * to_two_dim) in
      let to_two_case = Type.Gist.case "To_two" to_two_prod in
      let one_proj = function One -> one_case | To_two _ -> to_two_case in
      Type.Gist.variant "M.one" one_proj [one_case; to_two_case]
      end
    and gtwo = lazy begin
      let gone = Type.Gist.rec' gone in
      let two_case = Type.Gist.(case "Two" @@ ctor Two) in
      let to_one_ctor t = To_one t in
      let to_one_proj = function To_one v -> v | _ -> assert false in
      let to_one_dim = Type.Gist.(dim gone to_one_proj) in
      let to_one_prod = Type.Gist.(ctor to_one_ctor * to_one_dim) in
      let to_one_case = Type.Gist.(case "To_one" @@ to_one_prod) in
      let two_proj = function Two -> two_case | To_one _ -> to_one_case in
      Type.Gist.variant "M.two" two_proj [two_case; to_one_case]
    end
    in
    (Lazy.force gone), (Lazy.force gtwo)
end

GADT witness hiding

For GADTs we need to cheat a little bit. When trying to describe it as a variant we can't type the case list since each case has another type witness. We can however define an existential for the GADT and describe it as if it was a regular variant.

module M = struct
  type 'a t =
  | Int : int t
  | Float : float t
  | Pair : 'a t * 'b t -> ('a * 'b) t

  type e = E : 'a t -> e (* We need to hide the witness. *)

  let type_gist : e Type.Gist.t =
    let rec g = lazy begin
      let g = Type.Gist.rec' g in
      let int_case = Type.Gist.(case "Int" @@ ctor (E Int)) in
      let float_case = Type.Gist.(case "Float" @@ ctor (E Float)) in
      let pair_ctor (E a) (E b) = E (Pair (a, b)) in
      let pair_lproj = function E Pair (a, _) -> E a | _ -> assert false in
      let pair_rproj = function E Pair (_, b) -> E b | _ -> assert false in
      let pair_ldim = Type.Gist.dim g pair_lproj in
      let pair_rdim = Type.Gist.dim g pair_rproj in
      let pair_prod = Type.Gist.(ctor pair_ctor * pair_ldim * pair_rdim) in
      let pair_case = Type.Gist.case "Pair" pair_prod in
      let t_proj : type a. e -> e Type.Gist.Variant.case = function
      | E Int -> int_case | E Float -> float_case | E (Pair _) -> pair_case
      in
      let cases = [int_case; float_case; pair_case] in
      Type.Gist.variant "_ M.t" t_proj cases
    end
    in
    Lazy.force g
end

Function template

The following is a function template for processing two values by following their gists.

Since the types need to be spelled out because of the GADT it is usually a good idea to define a type for the function you are defining. That's the purpose of the 'a t below which takes two values and returns unit you likely want to adjust that.

Also the implementation of Typegist.Fun.Generic functions can serve as simple examples.

module Generic_binary_fun = struct
  type 'a t = 'a -> 'a -> unit

  let rec fun_scalar : type a. a Type.Gist.scalar -> a t = fun s v0 v1 ->
    failwith "TODO"

  and fun_arraylike :
    type elt arr. (elt, arr) Type.Gist.arraylike -> arr t = fun a v0 v1 ->
    failwith "TODO"

  and fun_maplike :
    type k v m. (k, v, m) Type.Gist.maplike -> m t = fun m v0 v1 ->
    failwith "TODO"

  and fun_product : type p. p Type.Gist.product -> p t = fun p v0 v1 ->
    failwith "TODO"

  and fun_record : type r. r Type.Gist.record -> r t = fun r v0 v1 ->
    failwith "TODO"

  and fun_sum : type s. s Type.Gist.sum -> s t = fun s v0 v1 ->
    failwith "TODO"

  and fun_func :
    type d r. (d, r) Type.Gist.func -> (d -> r) t = fun f v0 v1 ->
    failwith "TODO"

  and fun_abstract :
    type a. a Type.Gist.abstract -> a t = fun a v0 v1 ->
    failwith "TODO"

  and fun_gist : type a. a Type.Gist.t -> a t = fun g v0 v1 -> match g with
  | Scalar s -> fun_scalar s v0 v1
  | Arraylike a -> fun_arraylike a v0 v1
  | Maplike m -> fun_maplike m v0 v1
  | Product p -> fun_product p v0 v1
  | Record r -> fun_record r v0 v1
  | Sum s -> fun_sum s v0 v1
  | Func f -> fun_func f v0 v1
  | Abstract a -> fun_abstract a v0 v1
  | Lazy (_, g) -> fun_gist g (Lazy.force v0) (Lazy.force v1)
  | Ref (_, g) -> fun_gist g !v0 !v1
  | Rec g -> fun_gist (Lazy.force g) v0 v1
end